NDA
Bejelentkezés
Kapcsolat
Choosability and paintability of the lexicographic product of graphs |
Tartalom: | http://real.mtak.hu/71209/ |
---|---|
Archívum: | MTA Könyvtár |
Gyűjtemény: |
Status = Published
Type = Article |
Cím: |
Choosability and paintability of the lexicographic product of graphs
|
Létrehozó: |
Keszegh, Balázs
Zhu, Xuding
|
Kiadó: |
Elsevier
|
Dátum: |
2017
|
Téma: |
QA Mathematics / matematika
QA166-QA166.245 Graphs theory / gráfelmélet
|
Tartalmi leírás: |
This paper studies the choice number and paint number of the lexicographic product of graphs. We prove that if G has maximum degree Δ, then for any graph H on n vertices ch(G[H])≤(4Δ+2)(ch(H)+log2n) and χP(G[H])≤(4Δ+2)(χP(H)+log2n). © 2017 Elsevier B.V.
|
Nyelv: |
angol
|
Típus: |
Article
PeerReviewed
info:eu-repo/semantics/article
|
Formátum: |
text
|
Azonosító: |
Keszegh, Balázs and Zhu, Xuding (2017) Choosability and paintability of the lexicographic product of graphs. DISCRETE APPLIED MATHEMATICS, 223. pp. 84-90. ISSN 0166-218X
|
Kapcsolat: |
https://doi.org/10.1016/j.dam.2017.02.008
MTMT:3305029; doi:10.1016/j.dam.2017.02.008
|