Ugrás a tartalomhoz

 

Decompositions of edge-colored infinite complete graphs into monochromatic paths

  • Metaadatok
Tartalom: http://real.mtak.hu/70250/
Archívum: MTA Könyvtár
Gyűjtemény: Status = Published

Type = Article
Cím:
Decompositions of edge-colored infinite complete graphs into monochromatic paths
Létrehozó:
Elekes, Márton
Soukup, Dániel Tamás
Soukup, Lajos
Szentmiklóssy, Zoltán
Kiadó:
North-Holland Publishing Company
Dátum:
2017
Téma:
QA Mathematics / matematika
QA166-QA166.245 Graphs theory / gráfelmélet
Tartalmi leírás:
An . r . -edge coloring of a graph or hypergraph . G=(V,E) is a map . c:E→(0,...,r-1). Extending results of Rado and answering questions of Rado, Gyárfás and Sárközy we prove that . •the vertex set of every r-edge colored countably infinite complete k-uniform hypergraph can be partitioned into r monochromatic tight paths with distinct colors (a tight path in a k-uniform hypergraph is a sequence of distinct vertices such that every set of k consecutive vertices forms an edge);•for all natural numbers r and k there is a natural number M such that the vertex set of every r-edge colored countably infinite complete graph can be partitioned into M monochromatic kth powers of paths apart from a finite set (a kth power of a path is a sequence v0,v1,. of distinct vertices such that 1≤|i-j|≤k implies that vivj is an edge);•the vertex set of every 2-edge colored countably infinite complete graph can be partitioned into 4 monochromatic squares of paths, but not necessarily into 3;•the vertex set of every 2-edge colored complete graph on ω1 can be partitioned into 2 monochromatic paths with distinct colors. . . © 2016 Elsevier B.V.
Nyelv:
angol
Típus:
Article
PeerReviewed
info:eu-repo/semantics/article
Formátum:
text
Azonosító:
Elekes, Márton and Soukup, Dániel Tamás and Soukup, Lajos and Szentmiklóssy, Zoltán (2017) Decompositions of edge-colored infinite complete graphs into monochromatic paths. DISCRETE MATHEMATICS, 340 (8). pp. 2053-2069. ISSN 0012-365X
Kapcsolat:
https://doi.org/10.1016/j.disc.2016.09.028
MTMT:3166430; doi:10.1016/j.disc.2016.09.028