NDA
Bejelentkezés
Kapcsolat
Efficient weight vectors from pairwise comparison matrices |
Tartalom: | http://real.mtak.hu/64983/ |
---|---|
Archívum: | MTA Könyvtár |
Gyűjtemény: |
Status = Published
Type = Article |
Cím: |
Efficient weight vectors from pairwise comparison matrices
|
Létrehozó: |
Bozóki, Sándor
Fülöp, János
|
Kiadó: |
Elsevier
|
Dátum: |
2018
|
Téma: |
HB Economic Theory / közgazdaságtudomány
HB5 Mathematical economics / matematikai közgazdaságtan
QA Mathematics / matematika
QA72 Algebra / algebra
|
Tartalmi leírás: |
Pairwise comparison matrices are frequently applied in multi-criteria decision making. A weight vector is called efficient if no other weight vector is at least as good in approximating the elements of the pairwise comparison matrix, and strictly better in at least one position. A weight vector is weakly efficient if the pairwise ratios
cannot be improved in all non-diagonal positions. We show that the principal eigenvector is always weakly efficient, but numerical examples show that it can be inefficient. The linear programs proposed test whether a given weight vector is (weakly) efficient, and in case of (strong) inefficiency, an efficient (strongly) dominating weight vector is calculated. The proposed algorithms are implemented in Pairwise Comparison Matrix Calculator, available at pcmc.online. |
Nyelv: |
magyar
|
Típus: |
Article
PeerReviewed
info:eu-repo/semantics/article
|
Formátum: |
text
|
Azonosító: |
Bozóki, Sándor and Fülöp, János (2018) Efficient weight vectors from pairwise comparison matrices. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 264 (2). pp. 419-427. ISSN 0377-2217
|
Kapcsolat: |
https://doi.org/10.1016/j.ejor.2017.06.033
DOI 10.1016/j.ejor.2017.06.033
|