NDA
Bejelentkezés
Kapcsolat
A Sharp Sobolev Interpolation Inequality on Finsler Manifolds |
Tartalom: | http://real.mtak.hu/15231/ |
---|---|
Archívum: | MTA Könyvtár |
Gyűjtemény: |
Status = Published
Type = Article |
Cím: |
A Sharp Sobolev Interpolation Inequality on Finsler Manifolds
|
Létrehozó: |
Kristály, Alexandru
|
Kiadó: |
Springer Verlag
|
Dátum: |
2015
|
Téma: |
QA Mathematics / matematika
QA73 Geometry / geometria
QA74 Analysis / analĂzis
|
Tartalmi leírás: |
In this paper we study a sharp Sobolev interpolation inequality on Finsler
manifolds. We show that Minkowski spaces represent the optimal framework for the Sobolev interpolation inequality on a large class of Finsler manifolds: (1) Minkowski spaces support the sharp Sobolev interpolation inequality; (2) any complete Berwald space with non-negative Ricci curvature which supports the sharp Sobolev interpolation inequality is isometric to a Minkowski space. The proofs are based on properties of the Finsler–Laplace operator and on the Finslerian Bishop–Gromov volume comparison theorem. |
Nyelv: |
angol
|
Típus: |
Article
PeerReviewed
info:eu-repo/semantics/article
|
Formátum: |
text
|
Azonosító: |
Kristály, Alexandru (2015) A Sharp Sobolev Interpolation Inequality on Finsler Manifolds. Journal of Geometric Analysis, 25 (4). pp. 2226-2240. ISSN 1050-6926
|
Kapcsolat: |
doi:10.1007/s12220-014-9510-5
|