NDA
Bejelentkezés
Kapcsolat
A Burgess-like subconvex bound for twisted L-functions |
Tartalom: | http://dx.doi.org/10.1515/FORUM.2007.003 |
---|---|
Archívum: | MTA Könyvtár |
Gyűjtemény: |
Status = Published
Type = Article |
Cím: |
A Burgess-like subconvex bound for twisted L-functions
|
Létrehozó: |
Blomer, V.
Harcos, Gergely
Michel, P.
Mao, Z.
|
Kiadó: |
Walter de Gruyter
|
Dátum: |
2007
|
Téma: |
QA Mathematics / matematika
QA71 Number theory / számelmélet
|
Tartalmi leírás: |
Let g be a cuspidal newform (holomorphic or Maass) of arbitrary level and nebentypus, X a primitive character of conductor q, and s a point on the critical line Rs = 1/2. It is proved that
L(g circle times chi, s) << epsilon,g,s q(1/2-(1/8)(1-20)+epsilon), where epsilon > 0 is arbitrary and theta = 7/64 is the current known approximation towards the RamannJan-Petersson conjecture (which would allow theta = 0); moreover, the dependence on s and all the parameters of g is polynomial. This result is an analog of Burgess' classical subconvex bound for Dirichlet L-functions. In Appendix 2 the above result is combined with a theorem of Waldspurger and the adelic calculations of Baruch-Mao to yield an improved uniform upper bound for the Fourier coefficients of holomorphic half-integral weight cusp forms. |
Típus: |
Article
PeerReviewed
|
Formátum: |
application/pdf
|
Azonosító: |
Blomer, V. and Harcos, Gergely and Michel, P. and Mao, Z. (2007) A Burgess-like subconvex bound for twisted L-functions. Forum Mathematicum, 19 (1). pp. 61-105. ISSN 0933-7741 (print), 1435-5337 (online)
|
Kapcsolat: |