Ugrás a tartalomhoz

 

A Burgess-like subconvex bound for twisted L-functions

  • Metaadatok
Tartalom: http://dx.doi.org/10.1515/FORUM.2007.003
Archívum: MTA Könyvtár
Gyűjtemény: Status = Published


Type = Article
Cím:
A Burgess-like subconvex bound for twisted L-functions
Létrehozó:
Blomer, V.
Harcos, Gergely
Michel, P.
Mao, Z.
Kiadó:
Walter de Gruyter
Dátum:
2007
Téma:
QA Mathematics / matematika
QA71 Number theory / számelmélet
Tartalmi leírás:
Let g be a cuspidal newform (holomorphic or Maass) of arbitrary level and nebentypus, X a primitive character of conductor q, and s a point on the critical line Rs = 1/2. It is proved that
L(g circle times chi, s) << epsilon,g,s q(1/2-(1/8)(1-20)+epsilon), where epsilon > 0
is arbitrary and theta = 7/64 is the current known approximation towards the RamannJan-Petersson conjecture (which would allow theta = 0); moreover, the dependence on s and all the parameters of g is polynomial. This result is an analog of Burgess' classical subconvex bound for Dirichlet L-functions. In Appendix 2 the above result is combined with a theorem of Waldspurger and the adelic calculations of Baruch-Mao to yield an improved uniform upper bound for the Fourier coefficients of holomorphic half-integral weight cusp forms.
Típus:
Article
PeerReviewed
Formátum:
application/pdf
Azonosító:
Blomer, V. and Harcos, Gergely and Michel, P. and Mao, Z. (2007) A Burgess-like subconvex bound for twisted L-functions. Forum Mathematicum, 19 (1). pp. 61-105. ISSN 0933-7741 (print), 1435-5337 (online)
Kapcsolat: