NDA
Bejelentkezés
Kapcsolat
Popular distances in 3-space |
| Tartalom: | http://dx.doi.org/10.1016/S0012-365X(98)00328-8 |
|---|---|
| Archívum: | MTA Könyvtár |
| Gyűjtemény: |
Status = Published
Type = Article |
| Cím: |
Popular distances in 3-space
|
| Létrehozó: |
Erdős, Paul
Harcos, Gergely
Pach, János
|
| Kiadó: |
Elsevier
|
| Dátum: |
1999
|
| Téma: |
QA Mathematics / matematika
QA71 Number theory / számelmélet
|
| Tartalmi leírás: |
Let m(n) denote the smallest integer m with the property that any set of n points in Euclidean 3-space has an element such that at most m other elements are equidistant from it. We have that cn(1/3) log log n less than or equal to m(n) less than or equal to n(3/5) beta(n), where c>0 is a constant and beta(n) is an extremely slowly growing function, related to the inverse of the Ackermann function.
|
| Típus: |
Article
PeerReviewed
|
| Formátum: |
application/pdf
|
| Azonosító: |
Erdős, Paul and Harcos, Gergely and Pach, János (1999) Popular distances in 3-space. Discrete Mathematics, 200 (1-3). pp. 95-99. ISSN 0012-365X
|
| Kapcsolat: |
http://dx.doi.org/10.1016/S0012-365X(98)00328-8
|
