Ugrás a tartalomhoz

 

Hamiltonian Finite Element Discretization for Nonlinear Free Surface Water Waves

  • Metaadatok
Tartalom: http://real.mtak.hu/72352/
Archívum: MTA Könyvtár
Gyűjtemény: Status = Published


Type = Article
Cím:
Hamiltonian Finite Element Discretization for Nonlinear Free Surface Water Waves
Létrehozó:
Brink, Freekjan
Izsák, Ferenc
van der Vegt, Jaap J.W.
Kiadó:
Springer
Dátum:
2017-10
Téma:
QA74 Analysis / analĂ­zis
QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány
Tartalmi leírás:
A novel finite element discretization for nonlinear potential flow water waves is presented. Starting from Luke’s Lagrangian formulation we prove that an appropriate finite element discretization preserves the Hamiltonian structure of the potential flow water wave equations, even on general time-dependent, deforming and unstructured meshes. For the time-integration we use a modified Störmer–Verlet method, since the Hamiltonian system is non-autonomous due to boundary surfaces with a prescribed motion, such as a wave maker. This results in a stable and accurate numerical discretization, even for large amplitude nonlinear water waves. The numerical algorithm is tested on various wave problems, including a comparison with experiments containing wave interactions resulting in a large amplitude splash.
Nyelv:
magyar
Típus:
Article
PeerReviewed
info:eu-repo/semantics/article
Formátum:
text
Azonosító:
Brink, Freekjan and Izsák, Ferenc and van der Vegt, Jaap J.W. (2017) Hamiltonian Finite Element Discretization for Nonlinear Free Surface Water Waves. Journal of Scientific Computing, 73 (1). pp. 366-394. ISSN 1573-7691 (electronic version)
Kapcsolat:
https://doi.org/10.1007/s10915-017-0416-9
DOI 10.1007/s10915-017-0416-9