NDA
Bejelentkezés
Kapcsolat
3-uniform hypergraphs and linear cycles |
Tartalom: | http://real.mtak.hu/71046/ |
---|---|
Archívum: | MTA Könyvtár |
Gyűjtemény: |
Status = Published
Type = Article |
Cím: |
3-uniform hypergraphs and linear cycles
|
Létrehozó: |
Ergemlidze, Beka
GyĹri, Ervin
Methuku, Abhishek
|
Kiadó: |
Elsevier
|
Dátum: |
2017
|
Téma: |
QA166-QA166.245 Graphs theory / grĂĄfelmĂŠlet
|
Tartalmi leírás: |
We continue the work of GyĂĄrfĂĄs, GyĹri and Simonovits [GyĂĄrfĂĄs, A., E. GyĹri and M. Simonovits, On 3-uniform hypergraphs without linear cycles. Journal of Combinatorics 7 (2016), 205â216], who proved that if a 3-uniform hypergraph H with n vertices has no linear cycles, then its independence number ÎąâĽ[Formula presented]. The hypergraph consisting of vertex disjoint copies of complete hypergraphs K5 3 shows that equality can hold. They asked whether Îą can be improved if we exclude K5 3 as a subhypergraph and whether such a hypergraph is 2-colorable. We answer these questions affirmatively. Namely, we prove that if a 3-uniform linear-cycle-free hypergraph H, doesn't contain K5 3 as a subhypergraph, then it is 2-colorable. This result clearly implies that ÎąâĽâ[Formula presented]â. We show that this bound is sharp. GyĂĄrfĂĄs, GyĹri and Simonovits also proved that a linear-cycle-free 3-uniform hypergraph contains a vertex of strong degree at most 2. In this context, we show that a linear-cycle-free 3-uniform hypergraph has a vertex of degree at most nâ2 when nâĽ10. Š 2017 Elsevier B.V.
|
Nyelv: |
angol
|
Típus: |
Article
PeerReviewed
info:eu-repo/semantics/article
|
Formátum: |
text
|
Azonosító: |
Ergemlidze, Beka and GyĹri, Ervin and Methuku, Abhishek (2017) 3-uniform hypergraphs and linear cycles. ELECTRONIC NOTES IN DISCRETE MATHEMATICS, 61. pp. 391-394. ISSN 1571-0653
|
Kapcsolat: |
https://doi.org/10.1016/j.endm.2017.06.064
MTMT:3303034; doi:10.1016/j.endm.2017.06.064
|