NDA
Bejelentkezés
Kapcsolat
CONVERGENCE OF THE MATRIX TRANSFORMATION METHOD FOR THE FINITE DIFFERENCE APPROXIMATION OF FRACTIONAL ORDER DIFFUSION PROBLEMS |
Tartalom: | http://real.mtak.hu/65174/ |
---|---|
Archívum: | MTA Könyvtár |
Gyűjtemény: |
Status = Published
Type = Article |
Cím: |
CONVERGENCE OF THE MATRIX TRANSFORMATION METHOD FOR THE FINITE DIFFERENCE APPROXIMATION OF FRACTIONAL ORDER DIFFUSION PROBLEMS
|
Létrehozó: |
Szekeres, Béla
Izsák, Ferenc
|
Kiadó: |
Springer
|
Dátum: |
2017
|
Téma: |
QA74 Analysis / analĂzis
|
Tartalmi leírás: |
Numerical solution of fractional order diffusion problems with homogeneous Dirichlet boundary conditions is investigated on a square domain. An appropriate extension
is applied to have a well-posed problem on R 2 and the solution on the square is regarded as a localization. For the numerical approximation a finite difference method is applied combined with the matrix transformation method. Here the discrete fractional Laplacian is approximated with a matrix power instead of computing the complicated approxima- tions of fractional order derivatives. The spatial convergence of this method is proved and demonstrated in some numerical experiments. |
Nyelv: |
magyar
|
Típus: |
Article
PeerReviewed
info:eu-repo/semantics/article
|
Formátum: |
text
|
Azonosító: |
Szekeres, Béla and Izsák, Ferenc (2017) CONVERGENCE OF THE MATRIX TRANSFORMATION METHOD FOR THE FINITE DIFFERENCE APPROXIMATION OF FRACTIONAL ORDER DIFFUSION PROBLEMS. APPLICATIONS OF MATHEMATICS, 62 (1). pp. 15-36. ISSN 1572-9109 (Online)
|
Kapcsolat: | |
Létrehozó: |
info:eu-repo/semantics/openAccess
|