NDA
Bejelentkezés
Kapcsolat
Choosability and paintability of the lexicographic product of graphs |
| Tartalom: | http://real.mtak.hu/40916/ |
|---|---|
| Archívum: | MTA Könyvtár |
| Gyűjtemény: |
Status = Submitted
Type = Article |
| Cím: |
Choosability and paintability of the lexicographic product of graphs
|
| Létrehozó: |
Keszegh, Balázs
Zhu, Xuding
|
| Kiadó: |
Elsevier
|
| Dátum: |
2016
|
| Téma: |
QA166-QA166.245 Graphs theory / gráfelmélet
|
| Tartalmi leírás: |
This paper studies the choice number and paint number of the lexicographic product of graphs. We prove that if $G$ has maximum degree $Delta$, then for
any graph $H$ on $n$ vertices $ch(G[H]) le (4Delta+2)(ch(H) +log_2 n)$ and $olch(G[H]) le (4Delta+2) (olch(H)+ log_2 n)$. |
| Nyelv: |
angol
|
| Típus: |
Article
NonPeerReviewed
info:eu-repo/semantics/article
|
| Formátum: |
text
|
| Azonosító: |
Keszegh, Balázs and Zhu, Xuding (2016) Choosability and paintability of the lexicographic product of graphs. DISCRETE APPLIED MATHEMATICS. ISSN 0166-218X (Submitted)
|
| Kapcsolat: |
