NDA
Bejelentkezés
Kapcsolat
The optimal rubbling number of ladders, prisms and Möbius-ladders |
Tartalom: | http://real.mtak.hu/39359/ |
---|---|
Archívum: | MTA Könyvtár |
Gyűjtemény: |
Status = Published
Type = Article |
Cím: |
The optimal rubbling number of ladders, prisms and Möbius-ladders
|
Létrehozó: |
Katona, Gyula Y.
Papp, László F.
|
Kiadó: |
Elsevier
|
Dátum: |
2016
|
Téma: |
QA166-QA166.245 Graphs theory / gráfelmélet
|
Tartalmi leírás: |
Abstract A pebbling move on a graph removes two pebbles at a vertex and adds one pebble at an adjacent vertex. Rubbling is a version of pebbling where an additional move is allowed. In this new move, one pebble each is removed at vertices v and w adjacent to a vertex u , and an extra pebble is added at vertex u . A vertex is reachable from a pebble distribution if it is possible to move a pebble to that vertex using rubbling moves. The optimal rubbling number is the smallest number m needed to guarantee a pebble distribution of m pebbles from which any vertex is reachable. We determine the optimal rubbling number of ladders ( P n □ P 2 ), prisms ( C n □ P 2 ) and Möbius-ladders.
|
Nyelv: |
angol
|
Típus: |
Article
PeerReviewed
info:eu-repo/semantics/article
|
Formátum: |
text
|
Azonosító: |
Katona, Gyula Y. and Papp, László F. (2016) The optimal rubbling number of ladders, prisms and Möbius-ladders. DISCRETE APPLIED MATHEMATICS, 209. pp. 227-246. ISSN 0166-218X
|
Kapcsolat: |
MTMT:3076947
|