Ugrás a tartalomhoz

 

The optimal rubbling number of ladders, prisms and Möbius-ladders

  • Metaadatok
Tartalom: http://real.mtak.hu/39359/
Archívum: MTA Könyvtár
Gyűjtemény: Status = Published
Type = Article
Cím:
The optimal rubbling number of ladders, prisms and Möbius-ladders
Létrehozó:
Katona, Gyula Y.
Papp, László F.
Kiadó:
Elsevier
Dátum:
2016
Téma:
QA166-QA166.245 Graphs theory / gráfelmélet
Tartalmi leírás:
Abstract A pebbling move on a graph removes two pebbles at a vertex and adds one pebble at an adjacent vertex. Rubbling is a version of pebbling where an additional move is allowed. In this new move, one pebble each is removed at vertices v and w adjacent to a vertex u , and an extra pebble is added at vertex u . A vertex is reachable from a pebble distribution if it is possible to move a pebble to that vertex using rubbling moves. The optimal rubbling number is the smallest number m needed to guarantee a pebble distribution of m pebbles from which any vertex is reachable. We determine the optimal rubbling number of ladders ( P n □ P 2 ), prisms ( C n □ P 2 ) and Möbius-ladders.
Nyelv:
angol
Típus:
Article
PeerReviewed
info:eu-repo/semantics/article
Formátum:
text
Azonosító:
Katona, Gyula Y. and Papp, László F. (2016) The optimal rubbling number of ladders, prisms and Möbius-ladders. DISCRETE APPLIED MATHEMATICS, 209. pp. 227-246. ISSN 0166-218X
Kapcsolat:
MTMT:3076947