NDA
Bejelentkezés
Kapcsolat
A finite difference method for fractional diffusion equations with Neumann boundary conditions |
Tartalom: | http://dx.doi.org/10.1515/math-2015-0056 |
---|---|
Archívum: | MTA Könyvtár |
Gyűjtemény: |
Status = Published
Type = Article |
Cím: |
A finite difference method for fractional diffusion equations
with Neumann boundary conditions
|
Létrehozó: |
Szekeres, Béla
Izsák, Ferenc
|
Dátum: |
2015
|
Téma: |
QA74 Analysis / analízis
|
Tartalmi leírás: |
A finite difference numerical method is investigated for fractional order diffusion problems in one space dimension.
The basis of the mathematical model and the numerical approximation is an appropriate extension of the initial values, which incorporates homogeneous Dirichlet or Neumann type boundary conditions. The well-posedness of the obtained initial value problem is proved and it is pointed out that each extensions is compatible with the original boundary conditions. Accordingly, a finite difference scheme is constructed for the Neumann problem using the shifted Grünwald--Letnikov approximation of the fractional order derivatives, which is based on infinite many basis points. The corresponding matrix is expressed in a closed form and the convergence of an appropriate implicit Euler scheme is proved. |
Típus: |
Article
PeerReviewed
|
Formátum: |
text
|
Azonosító: |
Szekeres, Béla and Izsák, Ferenc (2015) A finite difference method for fractional diffusion equations with Neumann boundary conditions. Open Mathematics. pp. 581-600. ISSN 2391-5455
|
Kapcsolat: |