NDA
Bejelentkezés
Kapcsolat
A composite functional equation from algebraic aspect |
Tartalom: | http://real.mtak.hu/29492/ |
---|---|
Archívum: | MTA Könyvtár |
Gyűjtemény: |
Status = Published
Type = Article |
Cím: |
A composite functional equation from algebraic aspect
|
Létrehozó: |
Burai, Pál
Házy, Attila
Juhász, Tibor
|
Dátum: |
2013
|
Téma: |
QA72 Algebra / algebra
QA74 Analysis / analízis
|
Tartalmi leírás: |
In this paper we discuss the composite functional equation
f(x+2f(y))=f(x)+y+f(y) on an Abelian group. This equation originates from Problem 10854 of the American Mathematical Monthly. We give an algebraic description of the solutions on uniquely 3-divisible Abelian groups, and then we construct all solutions f of this equation on finite Abelian groups without elements of order 3 and on divisible Abelian groups without elements of order 3 including the additive group of real numbers. |
Típus: |
Article
PeerReviewed
|
Formátum: |
text
|
Azonosító: |
Burai, Pál and Házy, Attila and Juhász, Tibor (2013) A composite functional equation from algebraic aspect. Aequationes Mathematicae, 86 (1-2). pp. 57-64. ISSN 0001-9054 (print version), 1420-8903 (electronic version)
|
Kapcsolat: |