NDA
Bejelentkezés
Kapcsolat
	  			Ellipsoid characterization theorems | 
      	
| Tartalom: | http://www.degruyter.com/view/j/advg.2013.13.issue-1/advg... | 
|---|---|
| Archívum: | MTA Könyvtár | 
| Gyűjtemény: | 
															Status = Published
										 Type = Article  | 
	    	
| Cím: | 
								 
					Ellipsoid characterization theorems
				 
								 | 
			
| Létrehozó: | 
										 
						Lángi, Zsolt
					 
									 | 
			
| Dátum: | 
													 
					2013-01-08
										 
												 | 
	    	
| Téma: | 
													 
					QA73 Geometry / geometria
										 
												 | 
			
| Tartalmi leírás: | 
													 
					In this note we prove two ellipsoid characterization theorems. The first one is that if K is a convex body in a normed space with unit ball M, and for any point p ? K and in any 2-dimensional plane P intersecting intK and containing p, there are two tangent segments of the same normed length from p to K, then K and M are homothetic ellipsoids. Furthermore, we show that if M is the unit ball of a strictly convex, smooth norm, and in this norm billiard angular bisectors coincide with Busemann angular bisectors or Glogovskij angular bisectors, then M is an ellipse.
										 
												 | 
	    	
| Típus: | 
													 
					Article
										 
																	
					PeerReviewed
										 
												 | 
			
| Formátum: | 
													 
					text
										 
												 | 
			
| Azonosító: | 
													
																	 
					Lángi, Zsolt  (2013) Ellipsoid characterization theorems.  Advances in Geometry, 13 (1).  pp. 145-154.  ISSN 1615-7168
										 
												 | 
			
| Kapcsolat: | 
