NDA
Bejelentkezés
Kapcsolat
Ellipsoid characterization theorems |
| Tartalom: | http://www.degruyter.com/view/j/advg.2013.13.issue-1/advg... |
|---|---|
| Archívum: | MTA Könyvtár |
| Gyűjtemény: |
Status = Published
Type = Article |
| Cím: |
Ellipsoid characterization theorems
|
| Létrehozó: |
Lángi, Zsolt
|
| Dátum: |
2013-01-08
|
| Téma: |
QA73 Geometry / geometria
|
| Tartalmi leírás: |
In this note we prove two ellipsoid characterization theorems. The first one is that if K is a convex body in a normed space with unit ball M, and for any point p ? K and in any 2-dimensional plane P intersecting intK and containing p, there are two tangent segments of the same normed length from p to K, then K and M are homothetic ellipsoids. Furthermore, we show that if M is the unit ball of a strictly convex, smooth norm, and in this norm billiard angular bisectors coincide with Busemann angular bisectors or Glogovskij angular bisectors, then M is an ellipse.
|
| Típus: |
Article
PeerReviewed
|
| Formátum: |
text
|
| Azonosító: |
Lángi, Zsolt (2013) Ellipsoid characterization theorems. Advances in Geometry, 13 (1). pp. 145-154. ISSN 1615-7168
|
| Kapcsolat: |
